BOOT-TS: A Scalable Bootstrap for Massive Time-Series Data
نویسندگان
چکیده
We propose a scalable method of assessing the quality of machine learning algorithms over sampled time-series data. While bootstrap provides a simple and powerful means of estimating accuracy, its application to large time-series data still suffers from scalability issues. As an alternative we introduce BOOT-TS, a scalable extension of bootstrap for time-series which utilizes the recent advances in bootstrap and time-series theory to provide a practical implementation for assessing a time-series sample quality using Hadoop. For instance, our new procedure yields a robust and computationally efficient means of assessing the quality of our Twitter analytics workflow over large, real-world, time-series data.
منابع مشابه
SFB 823 A subsampled double bootstrap for massive data
The bootstrap is a popular and powerful method for assessing precision of estimators and inferential methods. However, for massive datasets which are increasingly prevalent, the bootstrap becomes prohibitively costly in computation and its feasibility is questionable even with modern parallel computing platforms. Recently Kleiner, Talwalkar, Sarkar, and Jordan (2014) proposed a method called BL...
متن کاملA subsampled double bootstrap for massive data
The bootstrap is a popular and powerful method for assessing precision of estimators and inferential methods. However, for massive datasets which are increasingly prevalent, the bootstrap becomes prohibitively costly in computation and its feasibility is questionable even with modern parallel computing platforms. Recently Kleiner, Talwalkar, Sarkar, and Jordan (2014) proposed a method called BL...
متن کاملSemiparametric Bootstrap Prediction Intervals in time Series
One of the main goals of studying the time series is estimation of prediction interval based on an observed sample path of the process. In recent years, different semiparametric bootstrap methods have been proposed to find the prediction intervals without any assumption of error distribution. In semiparametric bootstrap methods, a linear process is approximated by an autoregressive process. The...
متن کاملBootstrap-after-Bootstrap Model Averaging for Reducing Model Uncertainty in Model Selection for Air Pollution Mortality Studies
BACKGROUND Concerns have been raised about findings of associations between particulate matter (PM) air pollution and mortality that have been based on a single "best" model arising from a model selection procedure, because such a strategy may ignore model uncertainty inherently involved in searching through a set of candidate models to find the best model. Model averaging has been proposed as ...
متن کاملA scalable bootstrap for massive data
The bootstrap provides a simple and powerful means of assessing the quality of estimators. However, in settings involving large datasets—which are increasingly prevalent— the computation of bootstrap-based quantities can be prohibitively demanding computationally. While variants such as subsampling and the m out of n bootstrap can be used in principle to reduce the cost of bootstrap computation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012